INTERNATIONAL UNION OF GEOLOGICAL SCIENCES
COMMISSION ON STRATIGRAPHY

-s-D-s-

SUBCOMMISSION ON DEVONIAN STRATIGRAPHY

NEWSLETTER NO. 3

January 1987
IUGS Subcommission on Devonian Stratigraphy

Editor D.L. Dineley,
Department of Geology,
University of Bristol,
U.K.
The Devonian Subcommission met in Czechoslovakia August 3-11. Three field days in the Harrandian, SW of Prague, were designed to study Lower Devonian rocks, particularly possible stratotype sections for the Pragian and Emsian stages. This was followed by a 2-day business meeting in Prague and a 3-day excursion to Moravia to see and collect from rocks of Givetian to Early Carboniferous age. The business meeting included full and open discussions of remaining stage definitions and stratotypes. There is a convergence of opinion on several of these and members present agreed that completion of stage definitions prior to the next Geological Congress (Washington, 1989) is feasible. All aspects of the meeting were arranged by Dr. Ivo Chlupáč (UGG) and hosted by the Štěpánka water geology (Czechoslovak Geological Survey). The Subcommission's thanks go to Ivo and his colleagues for all the excellent arrangements made.

Four new Corresponding Members were elected to the Subcommission on Devonian Stratigraphy at the Prague meeting:

Dr. Cai Chong-yang (paleobotany and non-marine stratigraphy)
Dr. Ruan Yi-ping (ammonoids and tentaculitids)
Dr. Wang Chen-yuan (conodonts)

all of the Nanjing Institute of Geology and Palaeontology, Academia Sinica, P.R.C., and Dr. A.J. Wright (coals, brachiopods), Department of Geology, University of Wollongong, N.S.W., Australia.

You will see from the Membership list that we have a number of colleagues who are keenly interested in our work and who are active in stratigraphy. They are, however, accorded Honorary Membership status as they are primarily concerned with non-Devonian strata.

The list now includes:-

Prof. C.H. Holland, Trinity College, Dublin, Eire.
Prof. G. Sevastopoulo, Trinity College, Dublin, Eire.
Dr. R. Einding-Larven, Norwegian Geol. Survey, Trondheim, Norway.
Dr. M.G. Bassett, National Museum of Wales, Cardiff, U.K.
Dr. J.W. Cowie, University of Bristol, Bristol, U.K.
Dr. E. Paproth, Geologisches Landesamt Nordrhein-Westfalen, Krefeld, B.R.D.
Prof. J. Remane, University of Neuchatel, Switzerland.

We have also heard from Mr. J.C. Lock of the Department of Geology, The University of the Orange Free State, Bloemfontein 9300, Republic of South Africa. He pointed out that we have no member from Africa south of the Sahara, but there is a strong presence of Devonian rocks in the Cape area.
Series Boundaries

John Cowie, Chairman of the International Commission on Stratigraphy, tells me that our 598 proposals have been presented to the Commission and received almost unanimous approval for recommendation to I.C.U.G.S. in Paris next month. An article in a forthcoming issue of Episodes states the case for our series boundaries proposals. In this matter the S.D.S. is well in the vanguard and before too long, we may hope, we may be completing our studies of stage boundaries.

CM Jim Sorens, Binghamton, U.S.A. reports:-

The 1981 volumes, edited by W.A. Oliver, Jr. and Gilbert Klapper, the Devonian of New York State, parts I, Biostratigraphy and II, Field Trip Scope, has been reprinted by the S.U.N. Binghamton Library, and bound together as a single volume. It can be obtained by interested workers for $8.00 U.S., postpaid. Orders should be addressed to:

Library Accounting Office
Glenn G. Bartle Library
St. Univ. of New York at Binghamton
Binghamton, New York 13901
U.S.A.

The British Isles 'Friends of the Devonian' are arranging an informal meeting as shown below. They would be happy for members of the Subcommission, who so wish, to join them.

"Devonian clastic facies in the Ardennes"
Leader: Jacques Thorez (University of Liège)
Depart Dover, Friday 1st May, 1987 a.m.
Return Dover, Sunday 3rd May, 1987 p.m.
(Taxi by car and 7 minibus!

Further details contact:

Dr. Ian Tunbridge
Department of Geological Sciences
Plymouth Polytechnic
Duke Circus
Plymouth PL4 8AA
U.K.

DLD
ON SELECTING CHRONOSTRATIGRAPHIC BOUNDARIES

An important guideline for choosing CS boundary levels is that each boundary be located in an unbroken stratigraphic succession, of rocks deposited in a single lithotope, in order to insure that local environmental changes did not cause the evolutionary changes used to define and identify the boundary.

The logic of this guideline is so strong as to be unarguable. Further, the success of the first choice of a CS boundary level for a geologic system, at the base of the Devonian, has validated the application of this guideline in a compelling way.

However, there is evident concern among stratigraphers that the exclusive use of CS boundaries to delineate rock units fails to provide a language to describe the so-called natural units. Natural sedimentary rock units, or packages, are rock assemblages enclosed by widespread unconformities or by events that abruptly alter lithofacies and biofacies, over a broad area. Natural packages are powerful tools available to geologists and should not be obscured or downgraded because of nomenclatural constraints imposed in the absence of pragmatic considerations.

There is no widespread natural boundary at or stratigraphically near the base of the Devonian so no choice between CS and natural boundary levels was necessary when that boundary was defined. However, there is a natural boundary near or at the base of the Carboniferous, the base of the Famennian, and the base of the Pragian. When these boundaries are defined it should be possible to have the best of both approaches. Figure 1 illustrates the method of choice of a boundary level advocated here. In situations where an array of CS boundary choices is close to a widespread unconformity the boundary level should be chosen in a continuous sequence so as to project into the unconformity, preferably at the apex of the regression-transgression wedge.

Fig. 1. Position of a CS boundary (at arrows) with relation to an unconformity, as advocated here.
In the example of the base of the Pragian, now under consideration by the Devonian Subcommittee of the IUGS, the rock boundary in the type area is the result of a regression (Chlupáč and Kukal, 1986). Regression, indicated by non-marine sandstones, is general at this level in near-shore areas of Europe (Babín Sandstone, Bunte Ebbe beds), or is represented by an actual physical break, as in the Remscheid anticline (Schmidt, 1949, Pl. 1). In North America, the succession at this level is punctuated by the cratonic unconformity between the Tippecanoe and Kaekasjka sequences (Sloss, 1963; Johnson, Klapper, and Sandberg, 1985). In Nevada, where best dated by conodonts, this unconformity is known to narrow to an interval comprising the upper part of the pesavis Zone and lower part of the sulcatus Zone (Johnson and Murphy, 1984). In as much as a major faunal change and realm shift in Nevada coincides with the physical boundary and is known to postdate the first appearance of Eognathodus sulcatus, the CE boundary should be defined at some level within the sulcatus Zone.

References

J. G. Johnson
Dept. of Geology
Oregon State University
Corvallis, OR 97331
Sept. 24, 1986
RAASCH, G.O. (Geological Consultant, 7201 - 1011 - 17th Avenue S.W.,
Calgary, Alberta T2P 0A8) has submitted the following abstracts of
work in progress:

MIDDLE-EARLY UPPER DEVONIAN STRATIGRAPHIC RELATIONS, NORTHEASTERN
BRITISH COLUMBIA

Gilbert G. Raasch

ABSTRACT

Stratigraphic relations of Devonian rock units lying between
early Frasnian Kuskwa (Canol) Shale and the Precambrian basement
are demonstrated by means of eight east-west cross-sections based
on subsurface data over an area corresponding to M.T.S. map units
940 and P plus the northern parts of units I and J.

Use of the top of the Dunedin-Hume-Nahanni succession of
Eifelian age as the primary datum reveals a marked westward
(basinward) thickening of these beds as well as of the underlying
Stone Dolomite. The latter appears to contain several depositional
cycles.

Bank carbonates constituting the Givetian Stringoccephalus zonal
succession, in places rest directly on the Eifelian limestones or are
separated from them by a substantial thickness of Evie-Klua (Hare
Indian) Shale. This shale is a facies equivalent of the lower and
middle parts of the bank carbonate, into which it grades both upward
and laterally. The highest part of the bank carbonate, however,
corresponding to the Stringoccephalus alekanus Zone and Sulfur
Point ("Murdock") Formation, appears to lack any shale equivalent.

Where the Givetian Upper Elk Point carbonate bank is fully
developed, it is overlain by up to several hundred feet of reefoid
limestone equivalent to the lower member of the Slave Point Formation
of the Great Slave Lake region.

Although paleontological evidence over western Canada indicates
that an important hiatus involving most or all of the conodont
hermanni-cristatus Zone exists between the Slave Point and the Elk
Point carbonates, their relation is concordant; Slave Point
carbonates occur only where the Upper Elk Point carbonate banks are
developed.

The carbonate bank edges are in the nature of steep submarine
caps, which range in height from 800 to 1200 feet (244 to
366 m). Therefore, marine withdrawal following Slave Point deposition at or
near the end of lower disparilis Zone time exposed a surface of
rugged topographic relief.

The subsequent marine transgression entered the low-lying parts
of this landscape, perhaps as early as late disparilis (Pachycysto-
pinnatissima) time, to deposit the grey shales of the Otter Park
Formation in channels between the carbonate banks. By earliest
Frasnian time, the profile of equilibrium had risen high enough to
permit deposition of Bearpaw Lake argillaceous limestones of
earliest Frasnian age (Lower Asymmetric Zone) above the Slave Point
carbonates, at least in the more southerly part of the area.
The succession under consideration terminates with the Muskwa (Canol) euxinic black shale of early Frasnian age, which rests unconformably on rock units ranging in age from earliest Frasnian to earliest Givetian.

LATEST MIDDLE AND EARLY UPPER DEVONIAN MEGAFANAL SUCCESSION, WESTERN CANADA

Gilbert O. Raasch

ABSTRACT

In western Canada, Devonian strata lying between Givetian beds with Stringoccephalus and the base of the Famennian Stage involve eleven megafanonal and conodont zones. Taking the region as a whole, these zones are in sequence, and are separated from the Stringoccephalus beds below by a hiatus corresponding to the conodont hermanni-cristatus Zone, and from the beds above by the Frasnian-Famennian unconformity.

The sequence divides naturally into four successions herein termed informally in ascending order, the Normandian, Wallbridgean, Lower Jasperan and Upper Jasperan successions. The Normandian succession involves the Beavertail Formation and the lower member of the Slave Point Formation. It is divisible into two biozones.

The Wallbridgean succession corresponds to Raasch's (1973) "lower well-aerated Unit" and comprises the Flume and most of the Waterways and Beavertail formations and their equivalents. It is divisible into four biozones.

The Lower Jasperan succession corresponds to the writer's "Medial Poorly-aerated Unit" and embraces the Perdrix, Cairn, Davenray, Cooking Lake, Majeau Lake, and Mildred units. It divides into two biozones.

For beds immediately underlying the sequence under consideration and comprising units of Eifelian age, and of Givetian age corresponding to the range of Stringoccephalus, the name Mackenzian succession is employed. It divides into eight zonal units, previously designated OM1 through OM8 by the writer (1982).

Although in terms of the region as a whole, the succession is in sequence, over much of it, a nonsequence occurs which is post-Normandian in age, and which corresponds to the herein designated Wallbridgean Onlap.

The relationship of the megafanonal zones to established conodont zones, as well as to equivalent rock units is considered. Some changes in stratigraphic nomenclature are recommended as a consequence of application of biostratigraphic controls in conjunction with the physical evidence.

Correlation of the zonal units with zones and rock units elsewhere in North America is indicated.
Nine discrete faunal zones comprise the Late Upper Devonian, Famennian succession in Western Canada. These in descending order are:

DFM 9 Zone of Tylothyris clarksvillensis
DFM 8 Zone of Palmatolepis expansa
DFM 7 Zone of Sinotectinostrum bannensis
DFM 6 Zone of Eumecicostrum seversoni (South)/ Sinotectinostrum avallana (North)
DFM 5 Zone of Psychonaetoechia sulculifera (South)/ Gastrodetoechia rugosa (North)
DFM 4 Zone of Basilicorynchus
DFM 3 Zone of Cyrtocopes perptia
DFM 2 Zone of Eoparaphorhynchus lentiformis
DFM 1 Zone of Paraphorhynchus walcottii

The sedimentary succession divides naturally into three gross-lithographic units, informally termed lower, middle and upper Famennian. The "lower" Famennian corresponds to the Sassenach and Alexo formations, the "middle" to the Palliser and Wabamun formation, and the "upper" to the Exshaw Formation.

None-sequence separates: (1) most or all of the Sassenach from the overlying Morrow Member of the Palliser Formation; (2) the Morrow Member from the Costigan Member of the Palliser Formation; (3) the Costigan Member from the lower Exshaw; and (4) the lower from the upper Exshaw. The relation of the upper Exshaw to the overlying Mississippian, Banff Formation, is sequential.

Relation of the proposed brachiopod zones to the formal conodont succession is indicated.
GUANGXI DEVONIAN, CHINA

The 562 Comprehensive Geological Brigade in Nanning, Hebei Province, reports that it has since 1982 been making systematic studies of the Middle and Upper Devonian section of Ma-anshan, Xiangzhou district, Guangxi.

1. The sequence and lithological character of the Middle and Upper Devonian is as follows (in ascending order):

- Guba Fm. - grey mudstone intercalated with bioclastic limestone at its base.
- Guohe Fm. - its lower part consists of dark grey mid-thick bedded limestone; its upper part consists of greyish yellow marls intercalated with thin limestone.
- Changshan Fm. - yellowish grey mudstone intercalated with thin marls.
- Jide Fm. - dark grey thin-mid bedded bioclastic limestone, with nodular structure at its top.
- Baqi Fm. - dark grey thin-mid bedded microsparitic-micritic limestone, intercalated with muddy-siliceous bands at its middle part.
- Juntian Fm. - dark grey lumpy and thin-mid bedded bioclastic micritic limestone.
- "Rongxian Fm." - light grey thick bedded bioclastic limestone.

"Guilin limestone" (sensu Hou et al., 1985, p. 41) at Ma-anshan primarily yields deep-water type Palmatolepids, while the typical Guilin limestone of the Guilin area contains back-reef (lagoonal) branching stromatoporoids. As these sections belong to different facies, we erect new formation, namely Juntian Fm., for this area instead of Guilin Fm.

2. At the base of Jide Fm. (bed no. 247, 2.56 m thick) *Icriodus obliqu marginatus* was found for the first time, it belongs to the upper part of ensensis zone. Above a continuous sequence of 21 conodont zones is the Upper ensensis Zone, Lower varcus Zone, Middle varcus Zone, Upper varcus Zone, Lower herranni-cristatus Zone, Upper herranni-cristatus Zone, *Disparilina* Zone, Lowermost asymmetrical Zone, Lower asymmetrical Zone, Middle asymmetrical Zone, Upper asymmetrical Zone, *An. triangularis* Zone, Lower *gigas* Zone, Upper *gigas* Zone, Uppermost *gigas* Zone, Lower Pa. *Triangularia* Zone, *An. triangularis* Zone, Lower *crepida* Zone, Middle *crepida* Zone, Upper *crepida* Zone. All of these zones can be well defined, except for the boundary between ensensis Zone and Lower varcus Zone. The conodonts of the Middle/Upper Devonian boundary beds had already been reported by Hou et al., 1985.

From the Givetian/Frasnian up to the Frasnian/Famenian boundary, the outcrop is continuous and well exposed. Such section is rare in the world, and may at least be considered as a regional type section for East Asia.
3. Icriodus obliquimarginatus was found at the base of Jide Fm., at the level where Stringocephalus first occurs. Thus, the base of Jide Fm. is a little higher than the base of Trois Fontaines Fm. of the Givet Limestone in the type area reported in the SDS Newsletter no. 1, 1986, Doc. F, p. 5.

4. The Frasnian/Famenian boundary is placed at the base of Middle triangularis Zone, 1.1 m below the top of Juniian Fm. The lithology of the boundary bed is homogeneous limestone. The boundary is within a thick grey limestone unit; the colour of the limestone from the upper Uppermost qinas zone to the lower Lower triangularis Zone is darker. This phenomenon is similar to the section of Schmidt quarry Kellervald, F.D.R. (SDS Newsletter no. 1, 1986), Doc. C, p. 2, Fig. Possibly it reveals the Frasnian-Famenian global event, but the lithological character of Maanshan section is more homogeneous. We recommend Maanshan section as the F/F fourth boundary stratotype candidate.

Messrs. Jia Hui-chen, Zhou Rui-ling, Yang De-li and Han Ying-Jian of the 562 Brigade at the Chinese Academy of Geological Sciences, Sanhe, regard this section as excellent for a reference section and wish to hear from colleagues who are interested. They will be happy to provide more details of the section.

The Range of Conodonts near Frasnian/Famenian Boundary at the Maanshan Section
Iridium Anomaly in the Huangmao Section, Guangxi

The Huangmao section, 80 km SE of Liuzhou City, Guangxi, has been noted (Ning, Z. et al., 1984)* as similar to that at Guizhou and at Oberstd-inghausen, Germany, and revealing beds containing the D/C boundary. The 34 cm thick black shale (Changshun Shale) rests on nodular limestone and may be correlated to the Hangenberg Shale. Overlying it is a siliceous limestone with S. sulcata. The Daihua limestone beneath it contains a praesulcata conodont fauna.

Now Bai, Ning and Chai (informal Communication August 1986) report that present in the shale are high concentrations of Ir, Ni, Co, Fe, As, Sb, Se and Sc, 20 to 100 times greater than the background levels. These anomalies occur in the basal 14 cm of the black shale. The iridium abundance is 1.4 ppt to 156 ppt - an anomaly similar to that at the K/T boundary. The ratios Au/Ni = 2.94 x 10^-5, Co/Ni = 0.036, Cr/Ni = 0.23 are similar to those of CI-type chondrites.

The authors suggest that, based on the conodont succession and the iridium anomaly, two levels for the D/C boundary are attractive:

1. base of Changshun Shale - representing a drastic event, caused by meteor impact.

2. duplicata Boundary. The D/C boundary has been recommended as at the praesulcata/sulcata level. S. sulcata occurs at the base of the Wangyou Limestone and its lowermost level is not known on account of the facies change. The authors prefer the sulcata/duplicata Boundary because it is said to mark the initiation of a world-wide increase in conodont diversity following the impact event. At Muhua (and Henn et al.) the early form of S. duplicata slightly precedes Gattendorfia, so this is very close to the Gattendorfia Boundary.

The duplicata boundary can be clearly defined within the continuous limestone succession in South China, not only in the basin facies but also in some shallow-water facies.

Iridium Anomaly in the Huangmao Section, Guangxi, China.
New records of Vertebrates in Devonian stratigraphy

(Numbers refer to papers listed below)

Forgive your editor indulging a predilection for these fossils, but in recent years the literature has included some accounts of remarkable fossils of interest perhaps to many colleagues on the Subcommission. These contributions enlarge our understanding of the fossils themselves and the environments of the day and they enhance biostratigraphy. A special publication of the Royal Society, London, concerns the evolution of non-marine environments and their roles in the Silurian and Devonian, and I hear that palaeoecological studies of the famous vertebrate-bearing sections in Yunnan are now in progress.

Meanwhile, work by French colleagues has greatly improved the account of Lower Devonian vertebrates and their biostratigraphy in Podol (2, 10), Spitsbergen (3, 4, 7, 11) and of other regions from North Africa to Turkey, Iran and Thailand (5, 9). There is now also a record from S. America (6).

Chinese contributions come in a constant stream of papers dealing with new species and with palaeogeographic distributions of vertebrates (10, 20, 21, 22).

Devonian placoderms and fish from Australia now indicate some very rich Middle and Late Devonian faunas with an Antarch succession that will soon bear comparison with that of China, though it does not extend below the Middle Devonian (13, 14, 15) Antarchi and other vertebrates continue to appear in the literature on Antarctica (14, 23, 24).

Both American (17, 18) and Soviet (1, 12, 16) palaeontologists record new species and there is now a record of a Soviet Devonian tetrapods (12).

The remarkable faunas from China and Australia include many endemic species as well as cosmopolitan forms and it is clear that both marine and non-marine faunas may contain vertebrates, commonly abundant and unusually well-preserved. Migration and dispersal of these animals will be better understood as the biogeography of the Devonian is unravelled and stricter chronological control is achieved via biostratigraphy.

D.L. Dineley

(24) Young, G.C. In prep. Antlarch (Placoderm fishes) from the Devonian Aztec Sandstone, South Victoria Land, Antarctica.

(25) Young, V.T. 1986. Early Devonian Fish material from the Horlick Formation, Ohio Range, Antarctica. Alcheringa, 10, 35-44.

DYNAMIC STRATIGRAPHY AND DEPOSITIONAL ENVIRONMENTS OF THE HAMILTON GROUP
(MIDDLE DEVONIAN) IN NEW YORK STATE, PART I

Carlton E. Brett, Editor
Bulletin Number 457
New York State Museum

CONTENTS:

The Middle Devonian Hamilton Group of New York: An Overview - Carlton E. Brett
Redefinition, Stratigraphy and Depositional Environments of the Mottville Member (Hamilton Group) in Central and Eastern New York - Thomas X. Grasso
Faunal and Lithologic Cyclicity in the Centerfield Member (Middle Devonian, Hamilton Group) of Western New York: A Reinterpretation of Depositional History - Michael Savarese, Lee M. Gray and Carlton E. Brett
Depositional Environments and Sequences, "Pleurodictyum Zone", Ludlowville Formation of Western New York - Keith B. Miller
Deposition and Early Diagenesis of a Middle Devonian Marine Shale; Ludlowville Formation, Western New York - Glenn T. Wygant
Petrology, Taphonomy and Sedimentary Environments of Pyritic Fossil Beds from the Hamilton Group (Middle Devonian) of Western New York - Vincent B. Dick and Carlton E. Brett
Storm-Generated Sedimentary Units: Tempestite Proximality and Event Stratification in the Middle Devonian Hamilton Group - Carlton E. Brett, Stephen E. Speyer and Gordon G. Baird

ORDER FROM:
Publications, New York State Geological Survey, State Education Department, Albany, New York 12230 ($12US, add $1 for foreign orders, by cheque or money order made payable to THE NEW YORK STATE LIBRARY).
A COMPLETE LIST OF N.Y.S. GEOLOGICAL SURVEY PUBLICATIONS WILL BE SENT TO YOU UPON REQUEST.